Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-(4-Methylphenyl)-1,3,4-oxadiazol-2amine

Juan Zheng, Wen-juan Li, Manman Song and Yan Xu*

Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China

Correspondence e-mail: xuyan@zzu.edu.cn

Received 9 March 2012; accepted 2 May 2012

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.124; data-to-parameter ratio = 14.2.

In the crystal structure of the title compound, C₉H₉N₃O, adjacent molecules are linked through N-H···N hydrogen bonds into a three-dimensional network.

Related literature

For background to 1,3,4-oxadiazole derivatives, see: Lv et al. (2010); Bachwani & Sharma (2011); Padmavathi et al. (2009); Tang et al. (2007); Xue et al. (2007).

Experimental

Crystal data C₉H₉N₃O $M_r = 175.19$ Monoclinic, $P2_1/n$ a = 12.161 (2) Å b = 5.9374 (3) Å c = 12.8282 (15) Å $\beta = 108.012 \ (19)^{\circ}$

V = 880.9 (2) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$
T = 291 K
$0.38 \times 0.35 \times 0.30$ mm

Data collection

Rigaku Saturn diffractometer	3809 measured reflections
Absorption correction: multi-scan	1800 independent reflections
(CrystalClear; Rigaku/MSC,	1313 reflections with $I > 2\sigma(I)$
2006)	$R_{\rm int} = 0.022$
$T_{\min} = 0.966, T_{\max} = 0.973$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.124$	independent and constrained
S = 1.03	refinement
1800 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
127 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N3-H3A\cdots N1^{i}\\ N3-H3B\cdots N2^{ii}\end{array}}$	0.88 (2)	2.11 (2)	2.979 (2)	165.7 (19)
	0.93 (2)	2.05 (2)	2.964 (2)	167.6 (16)

Symmetry codes: (i) x, y + 1, z; (ii) $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support by the National Natural Science Foundation of China (No. 21171149).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2066).

References

- Bachwani, M. & Sharma, V. (2011). Ijrap, 4, 1738-1742.
- Lv, H.-S., Zhao, B.-X., Li, J.-K., Xia, Y., Lian, S., Liu, W.-Y. & Gong, Z.-L. (2010). Dyes Pigm. 6, 25-31.
- Padmavathi, V., Sudhakar Reddy, G., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 6, 2106-2112.

Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Tang, X.-L., Dou, W., Chen, S.-W., Dang, F.-F. & Liu, W.-S. (2007). Spectrochim. Acta Part A, 4, 349-353.
- Xue, J.-Q., Wang, S.-R., Zhang, L.-M. & Li, X.-G. (2007). Dyes Pigm. 3, 369-372.

supplementary materials

Acta Cryst. (2012). E68, o1668 [doi:10.1107/S1600536812019617]

5-(4-Methylphenyl)-1,3,4-oxadiazol-2-amine

Juan Zheng, Wen-juan Li, Manman Song and Yan Xu

Comment

Oxadiazole is a five-membered heterocyclic aromatic chemical compound having two carbons, two nitrogen, and one oxygen atoms and two double bonds. Up to now, a large number of oxadiazole derivatives have been prepared and a series of novel substituted 1,3,4-oxadiazole derivatives were synthesized (Bachwani *et al.*, 2011). In addition, electron transporting 1,3,4-oxadiazole moiety has been connected to many chelating ligands to obtain luminescent complexes with more new function. (Lv *et al.*, 2010) 1,3,4-oxadiazole, which has abundant N-donor and O-donor sites is easily to form single-crystal. However, there has been limited study about their crystal properties. To further explore these types of structures, we synthesized the title compound and its crystal structure is presented herein. The molecular structure of the title compound is represented in Fig. 1. As shown in figure 1, the bond length between O1 with C8 is 1.3608 (19) Å and is nearly the bond length between O1 with C7(1.3754) Å. The angle of C8—O1—C7 is 102.79 (11) Å. Similarly, the bond length of C7 with N1 is approximate the bond length of C8 with N2. They are 1.279 (2) Å, 1.296 (2) Å. The bond length between N1 with N2 is 1.4129 (19) Å. The dihedral angle between the phenyl and the Oxadiazole ring bonded to the imino group is 26.37 °. The torsion angle between C(7)—N(1)—N(2)—C(8) is -0.3 (2) °. As depicted in figure 2 and 3, intramolecular N—H···N hydrogen bonds stabilize the molecular configuration.

Experimental

The benzaldehyde (0.01 mol) and ethanol was added to semicarbazide hydrochloride (0.011 mol) refluxed 2 h. And then the obtained semicarbazone was oxidized by bromine liquid in acetic acid. The title compound (0.02 mmol) was dissolved in alcohol (3 ml) with a little aqueous solution. The resulting solution was allowed to stand at room temperature. Evaporation of the solvent, after three weeks yellow crystals with good quality were obtained from the filtrate and dried in air.

Refinement

All H atoms are positioned geometrically and refined as riding atoms, with C—H = 0.93-0.98 Å, N—H = 0.86 Å, O—H = 0.82 Å, and with $U_{iso} = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(O)$.

Computing details

Data collection: *CrystalClear* (Rigaku/MSC, 2006); cell refinement: *CrystalClear* (Rigaku/MSC, 2006); data reduction: *CrystalClear* (Rigaku/MSC, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

View of the title complex, showing the labeling of the 30% probability ellipsoids. H atoms are omitted for clarity.

Figure 2

View of the title complex, showing the packing of the structure.

Figure 3

View of the title complex, showing the hydrogen bonding in the crystal structure.

5-(4-Methylphenyl)-1,3,4-oxadiazol-2-amine

Crystal data	
C ₉ H ₉ N ₃ O	F(000) = 368
$M_r = 175.19$	$D_{\rm x} = 1.321 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 12.161 (2) Å	Cell parameters from 1122 reflections
b = 5.9374 (3) Å	$\theta = 3.3 - 26.3^{\circ}$
c = 12.8282 (15) Å	$\mu = 0.09 \mathrm{~mm^{-1}}$
$\beta = 108.012 \ (19)^{\circ}$	T = 291 K
V = 880.9 (2) Å ³	Prism, yellow
Z = 4	$0.38 \times 0.35 \times 0.30 \text{ mm}$
Data collection	
Rigaku Saturn	3809 measured reflections
diffractometer	1800 independent reflections
Radiation source: fine-focus sealed tube	1313 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}, \theta_{\text{min}} = 3.3^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan	$k = -7 \longrightarrow 6$
(CrystalClear; Rigaku/MSC, 2006)	$l = -16 \rightarrow 15$
$T_{\min} = 0.966, \ T_{\max} = 0.973$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.124$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
1800 reflections	and constrained refinement
127 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0612P)^2 + 0.0867P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
0.00011 (9)	0.21279 (17)	0.19008 (10)	0.0417 (3)
-0.06440 (12)	-0.1327 (2)	0.19144 (13)	0.0516 (4)
-0.13933 (12)	0.0146 (2)	0.22353 (14)	0.0497 (4)
-0.13387 (15)	0.4123 (3)	0.24629 (15)	0.0572 (5)
0.29096 (15)	-0.2138 (3)	0.05483 (15)	0.0515 (5)
0.19911 (16)	-0.3566 (3)	0.04961 (15)	0.0537 (5)
0.1975	-0.4991	0.0191	0.064*
0.11020 (16)	-0.2923 (3)	0.08861 (15)	0.0485 (5)
0.0500	-0.3917	0.0847	0.058*
0.11017 (13)	-0.0803 (3)	0.13353 (14)	0.0395 (4)
0.20195 (15)	0.0649 (3)	0.14061 (16)	0.0497 (5)
0.2036	0.2073	0.1712	0.060*
0.29100 (15)	-0.0041 (3)	0.10172 (17)	0.0568 (5)
0.3524	0.0933	0.1073	0.068*
0.01433 (13)	-0.0122 (3)	0.17222 (14)	0.0388 (4)
-0.09732 (14)	0.2145 (3)	0.22099 (15)	0.0411 (4)
0.38709 (18)	-0.2859 (4)	0.0109 (2)	0.0749 (7)
0.4075	-0.4395	0.0312	0.112*
0.4533	-0.1910	0.0410	0.112*
0.3617	-0.2730	-0.0676	0.112*
-0.1032 (18)	0.535 (4)	0.2273 (17)	0.068 (6)*
-0.2065 (17)	0.421 (3)	0.2559 (16)	0.062 (6)*
	x $0.00011 (9)$ $-0.06440 (12)$ $-0.13933 (12)$ $-0.13933 (12)$ $-0.13387 (15)$ $0.29096 (15)$ $0.19911 (16)$ 0.1975 $0.11020 (16)$ 0.0500 $0.11017 (13)$ $0.20195 (15)$ 0.2036 $0.29100 (15)$ 0.3524 $0.01433 (13)$ $-0.09732 (14)$ $0.38709 (18)$ 0.4075 0.4533 0.3617 $-0.1032 (18)$ $-0.2065 (17)$	x y 0.00011 (9)0.21279 (17)-0.06440 (12)-0.1327 (2)-0.13933 (12)0.0146 (2)-0.13387 (15)0.4123 (3)0.29096 (15)-0.2138 (3)0.19911 (16)-0.3566 (3)0.1975-0.49910.11020 (16)-0.2923 (3)0.0500-0.39170.11017 (13)-0.0803 (3)0.20195 (15)0.0649 (3)0.20360.20730.29100 (15)-0.0041 (3)0.35240.09330.01433 (13)-0.2859 (4)0.38709 (18)-0.2859 (4)0.4075-0.43950.4533-0.19100.3617-0.2730-0.1032 (18)0.535 (4)-0.2065 (17)0.421 (3)	xyz $0.00011 (9)$ $0.21279 (17)$ $0.19008 (10)$ $-0.06440 (12)$ $-0.1327 (2)$ $0.19144 (13)$ $-0.13933 (12)$ $0.0146 (2)$ $0.22353 (14)$ $-0.13387 (15)$ $0.4123 (3)$ $0.24629 (15)$ $0.29096 (15)$ $-0.2138 (3)$ $0.05483 (15)$ $0.19911 (16)$ $-0.3566 (3)$ $0.04961 (15)$ 0.1975 -0.4991 0.0191 $0.11020 (16)$ $-0.2923 (3)$ $0.08861 (15)$ 0.0500 -0.3917 0.0847 $0.11017 (13)$ $-0.0803 (3)$ $0.13353 (14)$ $0.20195 (15)$ $0.0649 (3)$ $0.14061 (16)$ 0.2036 0.2073 0.1712 $0.29100 (15)$ $-0.0041 (3)$ $0.10172 (17)$ 0.3524 0.0933 0.1073 $0.01433 (13)$ $-0.2125 (3)$ $0.17222 (14)$ $-0.09732 (14)$ $0.2145 (3)$ $0.22099 (15)$ $0.38709 (18)$ $-0.2859 (4)$ $0.0109 (2)$ 0.4075 -0.4395 0.0312 0.4533 -0.1910 0.0410 0.3617 -0.2730 -0.0676 $-0.1032 (18)$ $0.535 (4)$ $0.2273 (17)$ $-0.2065 (17)$ $0.421 (3)$ $0.2559 (16)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0408 (6)	0.0300 (6)	0.0602 (8)	-0.0006 (5)	0.0243 (6)	0.0001 (5)
N1	0.0544 (9)	0.0322 (8)	0.0790 (11)	-0.0021 (6)	0.0363 (8)	-0.0008(7)
N2	0.0521 (8)	0.0319 (8)	0.0768 (11)	-0.0014 (6)	0.0372 (8)	0.0020 (7)
N3	0.0563 (10)	0.0337 (9)	0.0968 (14)	0.0003 (7)	0.0460 (10)	-0.0007 (8)
C1	0.0468 (10)	0.0584 (12)	0.0530 (11)	0.0107 (9)	0.0209 (9)	0.0035 (9)
C2	0.0652 (12)	0.0437 (10)	0.0584 (12)	0.0078 (9)	0.0279 (10)	-0.0056 (9)
C3	0.0538 (10)	0.0393 (9)	0.0573 (11)	-0.0033 (8)	0.0244 (9)	-0.0043 (8)
C4	0.0400 (8)	0.0351 (9)	0.0447 (10)	0.0027 (7)	0.0148 (7)	0.0025 (7)
C5	0.0478 (9)	0.0390 (10)	0.0654 (12)	-0.0004 (8)	0.0222 (9)	-0.0041 (9)
C6	0.0439 (10)	0.0566 (12)	0.0758 (14)	-0.0018 (9)	0.0269 (10)	0.0005 (10)
C7	0.0431 (9)	0.0279 (8)	0.0472 (10)	0.0011 (7)	0.0165 (8)	0.0016 (7)
C8	0.0394 (8)	0.0348 (9)	0.0544 (11)	-0.0004 (7)	0.0223 (8)	0.0020 (8)
C9	0.0596 (12)	0.0929 (17)	0.0811 (16)	0.0168 (11)	0.0350 (12)	-0.0082 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01-C8	1.3608 (19)	С2—Н2	0.9300
N1-C71.279 (2)C3-H30.9300N1-N21.4129 (19)C4-C51.391 (2)N2-C81.296 (2)C4-C71.458 (2)N3-C81.331 (2)C5-C61.387 (2)N3-H3A0.88 (2)C5-H50.9300N3-H3B0.93 (2)C6-H60.9300C1-C61.382 (3)C9-H9A0.9600C1-C71.509 (3)C9-H9B0.9600C2-C31.378 (2)	O1—C7	1.3754 (18)	C3—C4	1.385 (2)
N1-N2 $1.4129 (19)$ C4-C5 $1.391 (2)$ N2-C8 $1.296 (2)$ C4-C7 $1.458 (2)$ N3-C8 $1.331 (2)$ C5-C6 $1.387 (2)$ N3-H3A $0.88 (2)$ C5-H5 0.9300 N3-H3B $0.93 (2)$ C6-H6 0.9300 C1-C6 $1.382 (3)$ C9-H9A 0.9600 C1-C2 $1.388 (3)$ C9-H9B 0.9600 C1-C9 $1.509 (3)$ C9-H9C 0.9600 C2-C3 $1.378 (2)$ $$	N1—C7	1.279 (2)	С3—Н3	0.9300
N2-C8 $1.296 (2)$ C4-C7 $1.458 (2)$ N3-C8 $1.331 (2)$ C5-C6 $1.387 (2)$ N3-H3A $0.88 (2)$ C5-H5 0.9300 N3-H3B $0.93 (2)$ C6-H6 0.9300 C1-C6 $1.382 (3)$ C9-H9A 0.9600 C1-C2 $1.388 (3)$ C9-H9B 0.9600 C1-C9 $1.509 (3)$ C9-H9C 0.9600 C2-C3 $1.378 (2)$ C C C8-O1-C7 $102.79 (11)$ C6-C5-H5 120.2 C8-N2-N1 $105.34 (13)$ C4-C5-H5 120.2 C8-N3-H3A $117.2 (13)$ C1-C6-C5 $121.82 (17)$ C8-N3-H3B $119.0 (11)$ C1-C6-H6 119.1 H3A-N3-H3B $119.1 (17)$ C5-C6-H6 119.1 C6-C1-C2 $117.61 (16)$ $N1-C7-O1$ $111.77 (14)$ C6-C1-C9 $121.48 (18)$ $N1-C7-C4$ $129.48 (15)$ C2-C1-C9 $120.92 (18)$ $01-C7-C4$ $118.74 (13)$ C3-C2-C1 $121.55 (17)$ $N2-C8-N3$ $129.62 (16)$ C3-C2-H2 119.2 $N3-C8-O1$ $112.70 (14)$ C1-C2-H2 119.2 $N3-C8-O1$ $117.65 (14)$ C2-C3-H3 119.9 $H9A-C9-H9B$ 109.5 C2-C3-H3 119.9 $H9A-C9-H9B$ 109.5 C3-C4-C7 $119.79 (15)$ $H9A-C9-H9C$ 109.5	N1—N2	1.4129 (19)	C4—C5	1.391 (2)
N3-C81.331 (2)C5-C61.387 (2)N3-H3A0.88 (2)C5-H50.9300N3-H3B0.93 (2)C6-H60.9300C1-C61.382 (3)C9-H9A0.9600C1-C21.388 (3)C9-H9B0.9600C1-C21.509 (3)C9-H9C0.9600C2-C31.378 (2)C6-C5-C4119.58 (16)C7-N1-N2102.79 (11)C6-C5-H5120.2C8-O1-C7102.79 (11)C6-C5-H5120.2C8-N2-N1105.34 (13)C4-C5-H5120.2C8-N3-H3A117.2 (13)C1-C6-C5121.82 (17)C8-N3-H3B119.0 (11)C1-C6-H6119.1H3A-N3-H3B119.1 (17)C5-C6-H6119.1C6-C1-C2117.61 (16)N1-C7-O1111.77 (14)C6-C1-C9121.48 (18)N1-C7-C4129.48 (15)C2-C1-C9120.92 (18)O1-C7-C4118.74 (13)C3-C2-C1121.55 (17)N2-C8-N3129.62 (16)C3-C2-H2119.2N3-C8-O1117.65 (14)C2-C3-C4120.28 (17)C1-C9-H9A109.5C2-C3-H3119.9C1-C9-H9B109.5C2-C3-H3119.9H9A-C9-H9B109.5C3-C4-C5119.15 (16)C1-C9-H9C109.5C3-C4-C7119.79 (15)H9A-C9-H9C109.5	N2—C8	1.296 (2)	C4—C7	1.458 (2)
N3—H3A0.88 (2)C5—H50.9300N3—H3B0.93 (2)C6—H60.9300C1—C61.382 (3)C9—H9A0.9600C1—C21.388 (3)C9—H9B0.9600C1—C91.509 (3)C9—H9C0.9600C2—C31.378 (2)C8—O1—C7102.79 (11)C6—C5—C4119.58 (16)C7—N1—N2107.39 (13)C6—C5—H5120.2C8—N2—N1105.34 (13)C4—C5—H5120.2C8—N3—H3A117.2 (13)C1—C6—C5121.82 (17)C8—N3—H3B119.0 (11)C1—C6—H6119.1H3A—N3—H3B119.1 (17)C5—C6—H6119.1C6—C1—C2117.61 (16)N1—C7—C1111.77 (14)C6—C1—C9121.48 (18)N1—C7—C4129.48 (15)C2—C1121.55 (17)N2—C8—N3129.62 (16)C3—C2—C1121.55 (17)N2—C8—N1112.70 (14)C1—C2—H2119.2N3—C8—O1117.65 (14)C2—C3—H3119.9C1—C9—H9B109.5C2—C3—H3119.9H9A—C9—H9B109.5C3—C4—C5119.15 (16)C1—C9—H9B109.5C3—C4—C5119.15 (16)C1—C9—H9C109.5C3—C4—C7119.79 (15)H9A—C9—H9C109.5	N3—C8	1.331 (2)	C5—C6	1.387 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—H3A	0.88 (2)	С5—Н5	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—H3B	0.93 (2)	С6—Н6	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C6	1.382 (3)	С9—Н9А	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.388 (3)	С9—Н9В	0.9600
C2—C31.378 (2)C8—O1—C7102.79 (11)C6—C5—C4119.58 (16)C7—N1—N2107.39 (13)C6—C5—H5120.2C8—N2—N1105.34 (13)C4—C5—H5120.2C8—N3—H3A117.2 (13)C1—C6—C5121.82 (17)C8—N3—H3B119.0 (11)C1—C6—H6119.1H3A—N3—H3B119.1 (17)C5—C6—H6119.1C6—C1—C2117.61 (16)N1—C7—O1111.77 (14)C6—C1—C9121.48 (18)N1—C7—C4129.48 (15)C2—C1—C9120.92 (18)O1—C7—C4118.74 (13)C3—C2—H2119.2N2—C8—N3129.62 (16)C3—C2—H2119.2N3—C8—O1117.65 (14)C2—C3—H3119.9C1—C9—H9A109.5C2—C3—H3119.9C1—C9—H9B109.5C3—C4—C5119.15 (16)C1—C9—H9B109.5C3—C4—C7119.79 (15)H9A—C9—H9C109.5C3—C4—C7121.06 (15)H9B—C9—H9C109.5	С1—С9	1.509 (3)	С9—Н9С	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.378 (2)		
ConstructionInterformConstructionInterformC7-N1-N2107.39 (13)C6-C5-H5120.2C8-N2-N1105.34 (13)C4-C5-H5120.2C8-N3-H3A117.2 (13)C1-C6-C5121.82 (17)C8-N3-H3B119.0 (11)C1-C6-H6119.1H3A-N3-H3B119.1 (17)C5-C6-H6119.1C6-C1-C2117.61 (16)N1-C7-O1111.77 (14)C6-C1-C9121.48 (18)N1-C7-C4129.48 (15)C2-C1-C9120.92 (18)O1-C7-C4118.74 (13)C3-C2-C1121.55 (17)N2-C8-N3129.62 (16)C3-C2-H2119.2N3-C8-O1112.70 (14)C1-C2-H2119.2N3-C8-O1117.65 (14)C2-C3-C4120.28 (17)C1-C9-H9A109.5C2-C3-H3119.9C1-C9-H9B109.5C3-C4-C5119.15 (16)C1-C9-H9C109.5C3-C4-C7119.79 (15)H9A-C9-H9C109.5C5-C4-C7121.06 (15)H9B-C9-H9C109.5	C8-01-C7	102 79 (11)	C6-C5-C4	119 58 (16)
$C_1 - R_1 - R_2$ $107.37(15)$ $C_0 - C_5 - R_5$ 120.2 $C_8 - N_2 - N1$ $105.34(13)$ $C_4 - C_5 - H_5$ 120.2 $C_8 - N_3 - H_3A$ $117.2(13)$ $C_1 - C_6 - C_5$ $121.82(17)$ $C_8 - N_3 - H_3B$ $119.0(11)$ $C_1 - C_6 - H_6$ 119.1 $H_3A - N_3 - H_3B$ $119.1(17)$ $C_5 - C_6 - H_6$ 119.1 $C_6 - C_1 - C_2$ $117.61(16)$ $N_1 - C_7 - O_1$ $111.77(14)$ $C_6 - C_1 - C_9$ $121.48(18)$ $N_1 - C_7 - C_4$ $129.48(15)$ $C_2 - C_1 - C_9$ $120.92(18)$ $O_1 - C_7 - C_4$ $118.74(13)$ $C_3 - C_2 - C_1$ $121.55(17)$ $N_2 - C_8 - N_3$ $129.62(16)$ $C_3 - C_2 - H_2$ 119.2 $N_3 - C_8 - O_1$ $112.70(14)$ $C_1 - C_2 - H_2$ 119.2 $N_3 - C_8 - O_1$ $117.65(14)$ $C_2 - C_3 - C_4$ $120.28(17)$ $C_1 - C_9 - H_9A$ 109.5 $C_2 - C_3 - H_3$ 119.9 $H_9A - C_9 - H_9B$ 109.5 $C_4 - C_3 - H_3$ 119.9 $H_9A - C_9 - H_9B$ 109.5 $C_3 - C_4 - C_5$ $119.15(16)$ $C_1 - C_9 - H_9C$ 109.5 $C_3 - C_4 - C_7$ $119.79(15)$ $H_9A - C_9 - H_9C$ 109.5	C7N1N2	102.79(11) 107.39(13)	C6-C5-H5	120.2
CS = N2 = N1 $105.34 (15)$ $C4 = C3 = H5$ 120.2 $C8 = N3 = H3A$ $117.2 (13)$ $C1 = C6 = C5$ $121.82 (17)$ $C8 = N3 = H3B$ $119.0 (11)$ $C1 = C6 = H6$ 119.1 $H3A = N3 = H3B$ $119.1 (17)$ $C5 = C6 = H6$ 119.1 $C6 = C1 = C2$ $117.61 (16)$ $N1 = C7 = O1$ $111.77 (14)$ $C6 = C1 = C9$ $121.48 (18)$ $N1 = C7 = C4$ $129.48 (15)$ $C2 = C1 = C9$ $120.92 (18)$ $O1 = C7 = C4$ $118.74 (13)$ $C3 = C2 = C1$ $121.55 (17)$ $N2 = C8 = N3$ $129.62 (16)$ $C3 = C2 = H2$ 119.2 $N2 = C8 = O1$ $112.70 (14)$ $C1 = C2 = H2$ 119.2 $N3 = C8 = O1$ $117.65 (14)$ $C2 = C3 = C4$ $120.28 (17)$ $C1 = C9 = H9A$ 109.5 $C2 = C3 = H3$ 119.9 $C1 = C9 = H9B$ 109.5 $C4 = C3 = H3$ 119.9 $H9A = C9 = H9B$ 109.5 $C3 = C4 = C5$ $119.15 (16)$ $C1 = C9 = H9C$ 109.5 $C3 = C4 = C7$ $119.79 (15)$ $H9A = C9 = H9C$ 109.5	C_{8} N2 N1	107.39(13) 105.34(13)	C4 - C5 - H5	120.2
C6 = N3 = H3R $117.2 (13)$ $C1 = C6 = C3$ $121.32 (17)$ $C8 = N3 = H3B$ $119.0 (11)$ $C1 = C6 = H6$ 119.1 $H3A = N3 = H3B$ $119.1 (17)$ $C5 = C6 = H6$ 119.1 $C6 = C1 = C2$ $117.61 (16)$ $N1 = C7 = O1$ $111.77 (14)$ $C6 = C1 = C9$ $121.48 (18)$ $N1 = C7 = C4$ $129.48 (15)$ $C2 = C1 = C9$ $120.92 (18)$ $O1 = C7 = C4$ $118.74 (13)$ $C3 = C2 = C1$ $121.55 (17)$ $N2 = C8 = N3$ $129.62 (16)$ $C3 = C2 = H2$ 119.2 $N2 = C8 = O1$ $117.65 (14)$ $C1 = C2 = H2$ 119.2 $N3 = C8 = O1$ $117.65 (14)$ $C2 = C3 = C4$ $120.28 (17)$ $C1 = C9 = H9A$ 109.5 $C2 = C3 = H3$ 119.9 $C1 = C9 = H9B$ 109.5 $C4 = C3 = H3$ 119.9 $H9A = C9 = H9B$ 109.5 $C3 = C4 = C5$ $119.15 (16)$ $C1 = C9 = H9C$ 109.5 $C3 = C4 = C7$ $119.79 (15)$ $H9A = C9 = H9C$ 109.5 $C3 = C4 = C7$ $121.06 (15)$ $H9B = C9 = H9C$ 109.5	C8 = N2 = N1 $C8 = N3 = H3 \Delta$	103.34(13) 117.2(13)	$C_{1} - C_{2} - C_{2}$	120.2
$C6^{-}$ (15) (15) $C1^{-}$ (26) (16) 119.1 $H3A-N3-H3B$ 119.1 (17) $C5-C6-H6$ 119.1 $C6-C1-C2$ 117.61 (16) $N1-C7-O1$ 111.77 (14) $C6-C1-C9$ 121.48 (18) $N1-C7-C4$ 129.48 (15) $C2-C1-C9$ 120.92 (18) $O1-C7-C4$ 118.74 (13) $C3-C2-C1$ 121.55 (17) $N2-C8-N3$ 129.62 (16) $C3-C2-H2$ 119.2 $N2-C8-O1$ 112.70 (14) $C1-C2-H2$ 119.2 $N3-C8-O1$ 117.65 (14) $C2-C3-C4$ 120.28 (17) $C1-C9-H9A$ 109.5 $C2-C3-H3$ 119.9 $C1-C9-H9B$ 109.5 $C4-C3-H3$ 119.9 $H9A-C9-H9B$ 109.5 $C3-C4-C5$ 119.15 (16) $C1-C9-H9C$ 109.5 $C3-C4-C7$ 119.79 (15) $H9A-C9-H9C$ 109.5 $C3-C4-C7$ 121.06 (15) $H9B-C9-H9C$ 109.5	C8—N3—H3B	117.2(13) 119.0(11)	C1C6H6	119.1
InstructionInstructionInstructionInstruction $C6-C1-C2$ $117.61(16)$ $N1-C7-O1$ $111.77(14)$ $C6-C1-C9$ $121.48(18)$ $N1-C7-C4$ $129.48(15)$ $C2-C1-C9$ $120.92(18)$ $O1-C7-C4$ $118.74(13)$ $C3-C2-C1$ $121.55(17)$ $N2-C8-N3$ $129.62(16)$ $C3-C2-H2$ 119.2 $N2-C8-O1$ $112.70(14)$ $C1-C2-H2$ 119.2 $N3-C8-O1$ $117.65(14)$ $C2-C3-C4$ $120.28(17)$ $C1-C9-H9A$ 109.5 $C2-C3-H3$ 119.9 $C1-C9-H9B$ 109.5 $C4-C3-H3$ 119.9 $H9A-C9-H9B$ 109.5 $C3-C4-C5$ $119.15(16)$ $C1-C9-H9C$ 109.5 $C3-C4-C7$ $119.79(15)$ $H9A-C9-H9C$ 109.5 $C3-C4-C7$ $121.06(15)$ $H9B-C9-H9C$ 109.5	$H_{3}A = N_{3} = H_{3}B$	119.0 (11)	C5-C6-H6	119.1
C6 - C1 - C9 $121.48 (18)$ $N1 - C7 - C4$ $129.48 (15)$ $C2 - C1 - C9$ $120.92 (18)$ $O1 - C7 - C4$ $118.74 (13)$ $C3 - C2 - C1$ $121.55 (17)$ $N2 - C8 - N3$ $129.62 (16)$ $C3 - C2 - H2$ 119.2 $N2 - C8 - O1$ $112.70 (14)$ $C1 - C2 - H2$ 119.2 $N3 - C8 - O1$ $117.65 (14)$ $C2 - C3 - C4$ $120.28 (17)$ $C1 - C9 - H9A$ 109.5 $C2 - C3 - H3$ 119.9 $C1 - C9 - H9B$ 109.5 $C4 - C3 - H3$ 119.9 $H9A - C9 - H9B$ 109.5 $C3 - C4 - C5$ $119.15 (16)$ $C1 - C9 - H9C$ 109.5 $C3 - C4 - C7$ $119.79 (15)$ $H9A - C9 - H9C$ 109.5 $C3 - C4 - C7$ $119.79 (15)$ $H9A - C9 - H9C$ 109.5 $C3 - C4 - C7$ $119.79 (15)$ $H9A - C9 - H9C$ 109.5 $C3 - C4 - C7$ $112.06 (15)$ $H9B - C9 - H9C$ 109.5	C_{6} C_{1} C_{2}	117.61.(16)	N1 - C7 - O1	111 77 (14)
C2-C1-C9120.92 (18)O1-C7-C4118.74 (13)C3-C2-C1121.55 (17)N2-C8-N3129.62 (16)C3-C2-H2119.2N2-C8-O1112.70 (14)C1-C2-H2119.2N3-C8-O1117.65 (14)C2-C3-C4120.28 (17)C1-C9-H9A109.5C2-C3-H3119.9C1-C9-H9B109.5C4-C3-H3119.9H9A-C9-H9B109.5C3-C4-C5119.15 (16)C1-C9-H9C109.5C3-C4-C7119.79 (15)H9A-C9-H9C109.5C5-C4-C7121.06 (15)H9B-C9-H9C109.5	C6-C1-C9	121 48 (18)	N1-C7-C4	129 48 (15)
C2C1C3C3C4C4C4C4C4C3C2C2C1121.55 (17)N2C8N3129.62 (16)C3C2H2119.2N2C8O1112.70 (14)C1C2H2119.2N3C8O1117.65 (14)C2C3C4120.28 (17)C1C9H9A109.5C2C3H3119.9C1C9H9B109.5C4C3H3119.9H9AC9H9B109.5C3C4C5119.15 (16)C1C9H9C109.5C3C4C7119.79 (15)H9AC9H9C109.5C5C4C7121.06 (15)H9BC9H9C109.5	$C_{2}-C_{1}-C_{9}$	120.92 (18)	01-C7-C4	118 74 (13)
C3 $-C2 -H2$ 119.2N2 $-C8 -O1$ 112.70 (14)C1 $-C2 -H2$ 119.2N3 $-C8 -O1$ 117.65 (14)C2 $-C3 -C4$ 120.28 (17)C1 $-C9 -H9A$ 109.5C2 $-C3 -H3$ 119.9C1 $-C9 -H9B$ 109.5C4 $-C3 -H3$ 119.9H9A $-C9 -H9B$ 109.5C3 $-C4 -C5$ 119.15 (16)C1 $-C9 -H9C$ 109.5C3 $-C4 -C7$ 119.79 (15)H9A $-C9 -H9C$ 109.5C5 $-C4 -C7$ 121.06 (15)H9B $-C9 -H9C$ 109.5	C_{3} C_{2} C_{1}	121.55 (17)	N2-C8-N3	129.62 (16)
C1-C2-H2 119.2 N3-C8-O1 117.65 (14) C2-C3-C4 120.28 (17) C1-C9-H9A 109.5 C2-C3-H3 119.9 C1-C9-H9B 109.5 C4-C3-H3 119.9 H9A-C9-H9B 109.5 C3-C4-C5 119.15 (16) C1-C9-H9C 109.5 C3-C4-C7 119.79 (15) H9A-C9-H9C 109.5 C5-C4-C7 121.06 (15) H9B-C9-H9C 109.5	C3-C2-H2	119.2	N2-C8-01	112.70 (14)
C2-C3-C4 120.28 (17) C1-C9-H9A 109.5 C2-C3-H3 119.9 C1-C9-H9B 109.5 C4-C3-H3 119.9 H9A-C9-H9B 109.5 C3-C4-C5 119.15 (16) C1-C9-H9C 109.5 C3-C4-C7 119.79 (15) H9A-C9-H9C 109.5 C5-C4-C7 121.06 (15) H9B-C9-H9C 109.5	C1—C2—H2	119.2	N3—C8—O1	117.65 (14)
C2—C3—H3 119.9 C1—C9—H9B 109.5 C4—C3—H3 119.9 H9A—C9—H9B 109.5 C3—C4—C5 119.15 (16) C1—C9—H9C 109.5 C3—C4—C7 119.79 (15) H9A—C9—H9C 109.5 C5—C4—C7 121.06 (15) H9B—C9—H9C 109.5	C2—C3—C4	120.28 (17)	С1—С9—Н9А	109.5
C4—C3—H3 119.9 H9A—C9—H9B 109.5 C3—C4—C5 119.15 (16) C1—C9—H9C 109.5 C3—C4—C7 119.79 (15) H9A—C9—H9C 109.5 C5—C4—C7 121.06 (15) H9B—C9—H9C 109.5	С2—С3—Н3	119.9	C1—C9—H9B	109.5
C3—C4—C5 119.15 (16) C1—C9—H9C 109.5 C3—C4—C7 119.79 (15) H9A—C9—H9C 109.5 C5—C4—C7 121.06 (15) H9B—C9—H9C 109.5	С4—С3—Н3	119.9	H9A—C9—H9B	109.5
C3—C4—C7 119.79 (15) H9A—C9—H9C 109.5 C5—C4—C7 121.06 (15) H9B—C9—H9C 109.5	C3—C4—C5	119.15 (16)	С1—С9—Н9С	109.5
C5-C4-C7 121.06 (15) H9B-C9-H9C 109.5	C3—C4—C7	119.79 (15)	Н9А—С9—Н9С	109.5
	C5—C4—C7	121.06 (15)	H9B—C9—H9C	109.5

C7—N1—N2—C8	-0.3 (2)	N2—N1—C7—C4	-177.86 (16)
C6—C1—C2—C3	0.6 (3)	C8—O1—C7—N1	-0.76 (19)
C9—C1—C2—C3	-179.45 (18)	C8—O1—C7—C4	177.94 (14)
C1—C2—C3—C4	0.6 (3)	C3—C4—C7—N1	14.9 (3)
C2—C3—C4—C5	-1.2 (3)	C5—C4—C7—N1	-165.33 (19)
C2—C3—C4—C7	178.60 (16)	C3—C4—C7—O1	-163.57 (15)
C3—C4—C5—C6	0.6 (3)	C5—C4—C7—O1	16.2 (2)
C7—C4—C5—C6	-179.16 (17)	N1—N2—C8—N3	-178.37 (19)
C2-C1-C6-C5	-1.2 (3)	N1—N2—C8—O1	-0.2 (2)
C9—C1—C6—C5	178.88 (19)	C7—O1—C8—N2	0.58 (19)
C4—C5—C6—C1	0.6 (3)	C7—O1—C8—N3	178.98 (16)
N2—N1—C7—O1	0.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H…A
N3—H3A····N1 ⁱ	0.88 (2)	2.11 (2)	2.979 (2)	165.7 (19)
N3—H3 <i>B</i> ···N2 ⁱⁱ	0.93 (2)	2.05 (2)	2.964 (2)	167.6 (16)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*–1/2, *y*+1/2, –*z*+1/2.